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Abstract

A non-linear multi-mode of vibration arises from the coupling of two or more normal modes of a non-linear system
under free-vibration. The ensuing motion takes place on a 2M-dimensional invariant manifold in the phase space of the
system, M being the number of coupled linear modes; the manifold contains a stable equilibrium point of interest, and
at that point is tangent to the 2M-dimensional eigenspace of the system linearised about that equilibrium point, which
characterises the corresponding M linear modes. On this manifold, M pairs of state variables govern the dynamics of
the system; that is, the system behaves like an M-degree-of-freedom oscillator. Non-linear multi-modes may therefore
come about when the system exhibits non-linear coupling among generalised co-ordinates. That is the case, for instance,
of internal resonance of the 1:2 or 1:3 types, for systems with quadratic or cubic non-linearities, respectively, in which a
four-dimensional manifold should be determined. Evaluation of non-linear multi-modes poses huge computational
challenges, which is the explanation for very limited reports on the subject in the literature so far. The authors devel-
oped a procedure to determine the non-linear multi-modes for finite-element models of plane frames, using the method
of multiple scales. This paper refers to the case of quadratic non-linearities. The results obtained by the proposed tech-
nique are in good agreement with those coming out from direct integration of the equations of motion in the time
domain and also with those few available in the literature.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Non-linear dynamics; Non-linear modes; Non-linear multi-modes; Quadratic non-linearities; Finite-element model;
Reduction technique
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.03.026

* Corresponding author. Tel.: +55 1130 915232; fax: +55 1130 915181.
E-mail address: cenmazzi@usp.br (C.E.N. Mazzilli).

mailto:cenmazzi@usp.br


5796 O.G.P. Baracho Neto, C.E.N. Mazzilli / International Journal of Solids and Structures 42 (2005) 5795–5820
1. Introduction

According to Boivin et al. (1994), Boivin et al. (1995a) and Boivin et al. (1995b), non-linear multi-modes
of vibration can be understood as an extension of the non-linear normal modes, in the case two or more of
them interact. Such interactions are stronger in presence of internal resonance. The ensuing free vibration
motion takes place in an invariant manifold embedded in the phase space, whose dimension is twice the
number of the normal modes which interact. This manifold contains a stable equilibrium point, and is tan-
gent there to the sub-eigenspace of the linearised system, which characterises the corresponding linear
modes. The multi-mode can be locally described by a linear combination of the linear modes. On this man-
ifold, the system behaves like anM-degree-of-freedom oscillator, whereM is the number of coupled normal
modes.

Both non-linear normal modes and multi-modes may be efficient projection functions to be used in the
reduction of degrees of freedom of non-linear systems, according to Mazzilli et al. (2001).

The authors developed a technique based on the method of multiple scales to evaluate the non-linear
multi-modes of discrete systems whose equations of motion are of the form of (1). Such a technique is
an extension of the procedure already proposed by them with success to the evaluation of non-linear nor-
mal modes, see Mazzilli and Baracho Neto (2002).

For simplicity and conciseness in the presentation, this paper will consider only systems in which the
quadratic non-linearities are the important ones, such that there are only two coupled normal modes in
internal resonance, their linear frequencies being in the 1:2 ratio. For systems with cubic non-linearities
and internal resonance of the 1:3 type, reference is made to Baracho Neto and Mazzilli (2005).

Suppose the equations of motion for a non-linear system with n degrees of freedom are of the form (1),
which is sufficiently general to accommodate not only systems that are naturally discrete, but also those
discretised by the finite-element method. That is, for instance, the case of planar frames, see Mazzilli
and Baracho Neto (2002).
Mrs€ps þ Drs _ps þ U ;r ¼ Fr ð1Þ

Mrs ¼ 0Mrs þ 1Mi
rspi þ 2Mij

rspipj
Drs ¼ 0Drs þ 1Di

rs _pi þ 2Dij
rs _pipj

U ;r ¼ 0Krsps þ 1Ki
rspips þ 2Kij

rspipjps

ð2Þ
[M] and [D] are, respectively, the matrices of mass and equivalent viscous damping, and {U} and {F} are,
respectively, the elastic force and the applied load vectors. This latter one is usually null in modal analysis,
unless vibration about the deformed equilibrium configuration is being considered, in which case it is a sta-
tic load vector. The generalised co-ordinates, velocities and accelerations are written as pi, _pi and €pi. Ein-
stein�s notation is being used throughout the text, so that repeated indices mean summation from 1 to n,
unless otherwise stated. Note that system (1) comprises both quadratic and cubic non-linearities, although,
in the present study, only the quadratic non-linearities are assumed to be the important ones.
2. Non-linear multi-modes for 1:2 internal resonance: time response

Non-linear multi-modes of systems with quadratic non-linearities tuned into 1:2 internal resonance are
now sought with the help of the method of multiple scales. The output will be the time response of each
generalised co-ordinate in the form of an asymptotic expansion of a small positive non-dimensional pertur-
bation parameter e. Note that the real time t is replaced by several time scales Tk, as defined below.
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T k ¼ ekt; Dn
i ¼

dn

dT n
i

piðtÞ ¼ pi0 þ epi1ðT 0; T 1; . . .Þ þ e2pi2ðT 0; T 1; . . .Þ þ e3pi3ðT 0; T 1; . . .Þ þ � � �
d

dt
¼ D0 þ eD1 þ e2D2 þ � � �

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2ð2D0D2 þ D2
1Þ þ � � �

ð3Þ
Here, pi0 refers to the static equilibrium configuration. After consideration of (2) and (3) in (1), as usual in
the method of multiple scales, the equation of motion will be written as
0Mrs D2
0 þ 2eD0D1 þ e2 2D0D2 þ D2

1

� �
þ � � �

� �
ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 0Drs D0 þ eD1 þ e2D2 þ � � �
� �

ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 0Krs ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �

þ 1Mi
rs pi0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �

� D2
0 þ 2eD0D1 þ e2 2D0D2 þ D2

1

� �
þ � � �

� �
ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 1Di
rs D0 þ eD1 þ e2D2 þ � � �
� �

ps0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �� �

� D0 þ eD1 þ e2D2 þ � � �
� �

ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 1Ki
rs pi0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �

ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �

þ 2Mij
rs pi0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �

pj0 þ epj1 þ e2pj2 þ e3pj3 þ � � �
� �

� D2
0 þ 2eD0D1 þ e2 2D0D2 þ D2

1

� �
þ � � �

� �
ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 2Dij
rs D0 þ eD1 þ e2D2 þ � � �
� �

pi0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �� �

� pj0 þ epj1 þ e2pj2 þ e3pj3 þ � � �
� �

� D0 þ eD1 þ e2D2 þ � � �
� �

ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �� �

þ 2Kij
rs pi0 þ epi1 þ e2pi2 þ e3pi3 þ � � �
� �

pj0 þ epj1 þ e2pj2 þ e3pj3 þ � � �
� �

� ps0 þ eps1 þ e2ps2 þ e3ps3 þ � � �
� �

¼ Fr ð4Þ
Obviously, for static reasons, the following relation must hold:
0Krsps0 þ 1Ki
rspi0ps0 þ 2Kij

rspi0pj0ps0 þ � � � ¼ Fr ð5Þ
2.1. Equations of order e

If only terms of order e are retained in (4), the free vibration problem of systems linearised about the
equilibrium configuration will appear
0M�
rsD

2
0ps1 þ 0D�

rsD0ps1 þ 0K�
rsps1 ¼ 0 ð6Þ
where
0M�
rs ¼ 0Mrs þ 1Mi

rspi0 þ 2Mij
rspi0pj0

0D�
rs ¼ 0Drs

0K�
rs ¼ 0Krs þ 1Ki

rs þ 1Ks
ri

� �
pi0 þ 2Kij

rs þ 2Kis
rj þ 2Ksj

ri

� �
pi0pj0

ð7Þ
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are respectively the mass, damping and stiffness coefficients evaluated at the equilibrium configuration.
Solution of (6) is simply
ps1 ¼ As1e
WT 0 ; As1 ¼ As1ðT 1; T 2; . . .Þ ð8Þ
which, taken into account in (6), will lead to
W20M�
rs þW0D�

rs þ 0K�
rs

� �
As1 ¼ 0 8r; s ¼ 1 to n: ð9Þ
This is the classic damped eigenvalue problem, for which the solvability condition is the characteristic
equation:
det W2 0M�� �
þW 0D�� �

þ 0K�� �� �
¼ 0: ð10Þ
The case of sub-critical damping of order O(e) is here assumed, so the roots of (10) are complex
Wu ¼ au þ ibu; u ¼ 1 to n ð11Þ

A convenient amplitude Au

v1—corresponding to the uth mode contribution to the non-null generalised co-
ordinate pv—is used to normalise the remaining modal amplitudes and define the corresponding modal
eigenvectors
Au
s1

Au
v1

¼ /u
s ) Au

s1 ¼ /u
sA

u
v1 ¼ cus þ idus

� �
Au
v1;

u; v; s ¼ 1 to n

no sum in u
ð12Þ
Without the risk of ambiguity, a lighter notation can be used for the modal amplitudes
Au
v1 ¼ Au

1

Au
s1 ¼ /u

sA
u
1 ¼ cus þ idus

� �
Au
1; no sum in u

ð13Þ
To the two resonating modes will be assigned indices I and II, respectively to those of smaller and larger
frequency, so that the time response, to the order of e, of a free vibration motion which contains solely con-
tributions from these two modes can be written as:
ps1 ¼ AI
s1e

WIT 0 þ AII
s1e

WIIT 0 þ c:c: ¼ /I
sA

I
1e

WIT 0 þ /II
s A

II
1 e

WIIT 0 þ c:c: ð14Þ

Note that (14) indicates that locally the motion takes place in the invariant manifold associated to this mul-
ti-mode, i.e. the invariant manifold is tangent to the sub-eigenspace of modes I and II.

2.2. Equations of order e2

Terms of order e2 are now retained in (4):
0M�
rsD

2
0ps2 þ 0D�

rsD0ps2 þ 0K�
rsps2 ¼ �2 0Mrs þ 1Mi

rspi0 þ 2Mij
rspi0pj0

� �
D0D1ps1 � 0DrsD1ps1

� 1Mi
rspi1 þ 2Mij

rspj0pi1 þ 2Mji
rspj0pi1

� �
D2

0ps1

� 1Di
rs þ 2Dij

rspj0
� �

D0pi1D0ps1ð Þ

� 1Ki
rspi1 þ 2Kij

rspj0pi1 þ 2Kji
rspj0pi1 þ 2Ksi

rjpj0pi1
� �

ps1: ð15Þ
Consider the following auxiliary expressions, which take into account the 1:2 internal resonance:
WI þWI ¼ 2aI

WII þWII ¼ 2aII
WII � 2WI ¼ DW

WII þWI ¼ WI þ aII þ iDb

ð16Þ
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where
DW ¼ Daþ iDb

Da ¼ aII � 2aI
Db ¼ bII � 2bI:

ð17Þ
It is assumed that the difference between WII and 2WI is a small complex number DW. This is a reasonable
assumption provided the linear frequencies are nearly in the 1:2 ratio, i.e. bII ffi 2bI. It is therefore assumed
that Db = O(e), and the damping is small and sub-critical for both modes, so that Da = O(e). Next, (14) and
(16) are considered in (15) to justify that the order e2 correction to the time response should be of the form
ps2 ¼ AI
s2e

WIT 0 þ AII
s2e

WIIT 0 þ BII
s2e

2WIIT 0 þ Cs2e
ðWIþWIIÞT 0 þ F I

s2e
2aIT 0 þ F II

s2e
2aIIT 0 þ c:c: ð18Þ
The coefficients of (18) can be determined once (14) and (18) are taken into (15) and each frequency com-
ponent is studied separately.

2.2.1. Terms in eWI T 0

20 � 0 � 0 �� �
I
WI Mrs þWI Drs þ Krs As2

¼ �2WI/
I
s

0Mrs þ 1Mi
rspi0 þ 2Mij

rspi0pj0
� �� �

D1A
I
1 � /I

s
0DrsD1A

I
1

� W2
II
�/
I

i/
II
s þW

2

I
�/
I

s/
II
i

� �
1Mi

rs þ 2Mij
rspj0 þ 2Mji

rspj0
� �

�A
I

1A
II
1 exp aII þ iDbð ÞT 0ð Þ

�WIWII
�/
I

i/
II
s þ �/

I

s/
II
i

� �
1Di

rs þ 2Dij
rspj0

� �
�A
I

1A
II
1 exp aII þ iDbð ÞT 0ð Þ

� �/
I

i/
II
s þ �/

I

s/
II
i

� �
1Ki

rs
�A
I

1A
II
1 exp aII þ iDbð ÞT 0ð Þ

� �/
I

i/
II
s þ �/

I

s/
II
i

� �
2Kij

rspj0 þ 2Kji
rspj0 þ 2Ksi

rjpj0
� �

�A
I

1A
II
1 exp aII þ iDbð ÞT 0ð Þ ð19Þ
It should be recalled that (10) implies that the matrix [0S] = W2[0M*] + W[0D*] + [0K*], that appears on the
left-hand side of (19), must be singular. Hence, for (19) to have solution, it is necessary that the determinant
of the matrix obtained by the substitution of any column of [0S] by the vector of terms on the right-hand
side of (19) be null, according to Cramer�s rule. This is precisely the solvability condition for the e2 terms
associated to the eigenvalue WI. Such an imposition will lead to a differential equation of the form:
ða1 þ ib1ÞD1A
I
1 þ ðc1 þ id1Þ�A

I

1A
II
1 exp

aII þ iDbð Þ
e

T 1

	 

¼ 0 ð20Þ
where a1, b1, c1 and d1 are real numbers.

2.2.2. Terms in eWII T 0

2 0 � 0 � 0 �� �
II
WII Mrs þWII Drs þ Krs As2

¼ �2WII/
II
s

0Mrs þ 1Mi
rspi0 þ 2Mij

rspi0pj0
� �� �

D1A
II
1 � /II

s
0DrsD1A

II
1

�W2
I/

I
i/

I
s

1Mi
rs þ 2Mij

rspj0 þ 2Mji
rspj0

� �
AI
1

� �2
expð�DWT 0Þ

�W2
I/

I
i/

I
s

1Di
rs þ 2Dij

rspj0
� �

AI
1

� �2
exp �DWT 0ð Þ

� /I
i/

I
s

1Ki
rs þ 2Kij

rspj0 þ 2Kji
rspj0 þ 2Ksi

rjpj0
� �

AI
1

� �2
expð�DWT 0Þ ð21Þ
The reasoning for the e2 terms associated to the eigenvalue WI applies likewise to the solvability condition
associated to the eigenvalue WII. Such an imposition will lead to a differential equation of the form
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ða2 þ ib2ÞD1A
II
1 þ ðc2 þ id2Þ AI

1

� �2
exp �DW

e
T 1

	 

¼ 0 ð22Þ
where a2, b2, c2 and d2 are real numbers.

2.2.3. Synthesis for terms in eWI T 0 and eWII T 0

The system of non-linear differential equations given by (21) and (22) has as unknowns the complex
modal amplitudes AI

1 and AII
1 . The solution can be searched in the form
AI
1 ¼

1

2
aI expðihIÞ

AII
1 ¼ 1

2
aII expðihIIÞ

ð23Þ
where aI, aII, hI, and hII are real numbers. The system (21) and (22) is then replaced by the system of four first-
order non-linear differential equations in the aforementioned real unknowns, with respect to the time scale T1
D1aI ¼ �
aIaII exp

aII
e T 1

� �
2 ða1Þ2 þ ðb1Þ2
h i ða1c1 þ b1d1Þ cos c1 þ ðb1c1 � a1d1Þ senc1½ �

D1aII ¼ �
ðaIÞ2 exp � Da

e T 1

� �
2 ða2Þ2 þ ðb2Þ2
h i ða2c2 þ b2d2Þ cos c1 � ðb2c2 � a2d2Þ senc1½ �

D1hI ¼
aII exp

aII
e T 1

� �
2 ða1Þ2 þ ðb1Þ2
h i ðb1c1 � a1d1Þ cos c1 � ða1c1 � b1d1Þ senc1½ �

D1hII ¼
ðaIÞ2 exp � Da

e T 1

� �
2aII ða2Þ2 þ ðb2Þ2

h i ðb2c2 � a2d2Þ cos c1 þ ða2c2 þ b2d2Þ senc1½ �

ð24Þ
with
c1 ¼
Db
e
T 1 þ hII � 2hI ¼ Dbt þ hII � 2hI: ð25Þ
Such a system does not have closed-form solution, but can be integrated numerically. The authors have
implemented a routine to integrate the system (24), using a Runge–Kutta algorithm within a symbolic
mathematics package. For details, refer to Baracho Neto (2003).

2.2.4. Terms in e2WII T 0

� � � �2 � � � �2

4W2

II
0M�

rs þ 2WII
0D�

rs þ 0K�
rs BII

s2 ¼ �W2
II
1Mi

rs/
II
i /

II
s AII

1 �W2
II

2Mij
rs þ 2Mji

rs pj0/
II
i /

II
s AII

1

�W2
II

1Di
rs þ 2Dij

rspj0
� �

/II
i /

II
s AII

1

� �2
� 1Ki

rs þ 2Kij
rs þ 2Kji

rs þ 2Ksi
rj

� �
pj0

h i
/II

i /
II
s AII

1

� �2
: ð26Þ
Therefore
BII
s2 ¼ qII

s AII
1

� �2 ¼ �IIs þ inIIs
� �

AII
1

� �2 ð27Þ
where �IIs and nIIs are real numbers.
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2.2.5. Terms in eðWIþWII ÞT 0h i

WI þWIIð Þ20M�

rs þ WI þWIIð Þ0D�
rs þ 0K�

rs Cs2

¼ �W2
II
1Mi

rs/
I
i/

II
s A

I
1A

II
1 �W2

I
1Ms

ri/
I
i/

II
s A

I
1A

II
1

� W2
II/

I
i/

II
s þW2

I/
I
s/

II
i

� �
2Mij

rs þ 2Mji
rs

� �
pj0A

I
1A

II
1

�WIWIIx 1Di
rs þ 2Dij

rspj0
� �

/I
i/

II
s þ /I

s/
II
i

� �
AI
1A

II
1

� 1Ki
rs þ 2Kij

rs þ 2Kji
rs þ 2Ksi

rj

� �
pj0

h i
/I

i/
II
s þ /I

s/
II
i

� �
AI
1A

II
1 : ð28Þ
Therefore
Cs2 ¼ gsA
I
1A

II
1 ¼ ðrs þ issÞAI

1A
II
1 ð29Þ
where rs and ss are real numbers.

2.2.6. Terms in e2aI T 0

� � � �� � I I

4a2I

0M�
rs þ 2aI

0D�
rs þ 0K�

rs F I
s2 ¼ �W2

I
1Mi

rs þ 2Mij
rs þ 2Mji

rs pj0 �/i/
I
s
�A1A

I
1

�WIWI
1Di

rs þ 2Dij
rspj0

� �
�/
I

i/
I
s
�A
I

1A
I
1

� 1Ki
rs þ 2Kij

rs þ 2Kji
rs þ 2Ksi

rj

� �
pj0

h i
�/
I

i/
I
s
�A
I

1A
I
1: ð30Þ
Therefore
F I
s2 ¼ kIs�A

I

1A
I
1 ¼ lI

s þ imIs
� �

�A
I

1A
I
1 ð31Þ
where lI
s and tIs are real numbers.

2.2.7. Terms in e2aII T 0

� � II II II � � II II II

4a2II

0M�
rs þ 2aII

0D�
rs þ 0K�

rs F II
s2 ¼ �W2

II
1Mi

rs
�/i /s

�A1 A
II
1 �W2

II
2Mij

rs þ 2Mji
rs pj0�/i /s

�A1 A
II
1

�WIIWII
1Di

rs þ 2Dij
rspj0

� �
�/
II

i /
II
s
�A
II

1 A
II
1

� 1Ki
rs þ 2Kij

rs þ 2Kji
rs þ 2Ksi

rj

� �
pj0

h i
�/
II

i /
II
s
�A
II

1 A
II
1 : ð32Þ
Therefore
F II
s2 ¼ kIIs �A

II

1 A
II
1 ¼ lII

s þ imIIs
� �

�A
II

1 A
II
1 ð33Þ
where lII
s and mIIs are real numbers.

2.3. Overall synthesis

After integrating system (24), order e terms in the power expansion of (3) will be determined. Also, tak-
ing into account (23), all relevant coefficients of the order e2 solution will be known, from (27), (29), (31)
and (33). Note that terms in eWIT 0 and eWIIT 0 in (18) can be neglected, since they can be included in the cor-
responding terms of the order e solution. Of course, the expansion could be developed further to the order
e3 solution and on, but the mathematics would be too costly, specially because the main qualitative features
of the 1:2 internal resonance would already be captured. Of course, truncation of cubic non-linearities may
have quantitative influence in the output. Anyhow, after some simplifications, the non-linear multi-mode
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would be characterised by the time functions of each generalised co-ordinate ps (and, by derivation, each
generalised velocity _ps)
ps ¼ ps0 þ e
cIs þ idIs
� �

2
aIeaIteiðbItþhIÞ þ

cIs � idIs
� �

2
aIeaIte�iðbItþhIÞ

" #

þ e
cIIs þ idIIs
� �

2
aIIeaIIteiðbIItþhIIÞ þ

cIIs � idIIs
� �

2
aIIeaIIte�iðbIItþhIIÞ

" #
þ e2

lI
s

2
ðaIÞ2

� �
e2aIt

þ e2
lII
s

2
ðaIIÞ2

� �
e2aIIt þ e2

�IIs þ inIIs
� �

4
ðaIIÞ2

" #
e2aIIte2iðbIItþhIIÞ

þ e2
�IIs � inIIs
� �

4
ðaIIÞ2

" #
e2aIIte�2iðbIItþhIIÞe2

rs þ issð Þ
4

aIaII

� �
eðaIþaIIÞtei½ðbIþbIIÞtþðhIþhIIÞ�

þ e2
rs � issð Þ

4
aIaII

� �
eðaIþaIIÞte�i½ðbIþbIIÞtþðhIþhIIÞ� ð34Þ
or, in real notation
ps ¼ ps0 þ âIeaIt cIs cosðbIt þ hIÞ � dIs sen ðbIt þ hIÞ
� �

þ âIIeaIIt cIIs cosðbIIt þ hIIÞ � dIIs sen ðbIIt þ hIIÞ
� �

þ 1

2
âIð Þ2lI

se
2aIt

þ 1

2
âIIð Þ2lII

s e
2aIIt þ 1

2
âIIð Þ2e2aIIt �IIs cos 2ðbIIt þ hIIÞ � nIIs sen2ðbIIt þ hIIÞ

� �
þ 1

2
âIâIIeðaIþaIIÞtrs cos ðbI þ bIIÞt þ ðhI þ hIIÞ½ �

� 1

2
âIâIIeðaIþaIIÞtss sen ðbI þ bIIÞt þ ðhI þ hIIÞ½ �; ð35Þ
where âI ¼ eaI and âII ¼ eaII. For details, refer to Baracho Neto (2003).
3. Non-linear multi-mode for 1:2 internal resonance: invariant manifold

To emphasise the topological structure of the non-linear multi-modes, the associated four-dimensional
invariant manifold will be explicitly determined in this section from the time response obtained in the pre-
vious section. Note that a four-dimensional ‘‘surface’’ will be determined in the phase space, so that once
the system is set to vibrate with initial conditions on this ‘‘surface’’, it will describe phase trajectories wholly
constrained to this ‘‘surface’’, thus justifying the denomination ‘‘invariant’’ manifold. From (34) it is
written
ps ¼ ps0 þ
e
2

cIs þ idIs
� �

aIeaIteixI þ e
2

cIIs þ idIIs
� �

aIIeaIIteixII þ e2

4
lI
s þ imIs

� �
ðaIÞ2e2aIt

þ e2

4
lII
s þ imIIs

� �
ðaIIÞ2e2aIIt þ

e2

4
�IIs þ inIIs
� �

ðaIIÞ2e2aIItei2xII

þ e2

4
ðrs þ issÞaIaIIeðaIþaIIÞteiðxIþxIIÞ þ c:c: ð36Þ
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with
xI ¼ bIt þ hI
xII ¼ bIIt þ hII

ð37Þ
The generalised velocities can be obtained by derivation with respect to time, according to
dps
dt

¼ _ps ¼ D0ps þ eD1ps þ Oðe3Þ ð38Þ
Hence
_ps ¼
e
2

cIs þ idIs
� �

aI þ ibIð ÞaIeaIteixI þ e
2

cIIs þ idIIs
� �

aII þ ibIIð ÞaIIeaIIteixII þ e2

2
lI
s þ imIs

� �
aIðaIÞ2e2aIt

þ e2

2
lII
s þ imIIs

� �
aIIðaIIÞ2e2aIIt þ

e2

2
�IIs þ inIIs
� �

ðaII þ ibIIÞðaIIÞ
2e2aIItei2xII

þ e2

4
ðrs þ issÞ ðaI þ aIIÞ þ iðbI þ bIIÞ½ �aIaIIeðaIþaIIÞteiðxIþxIIÞ � e2

4
cIs þ idIs
� �

�aaIaIIeðaIþaIIÞteixI

� e2

4
cIIs þ idIIs
� �

�bðaIÞ2e2aIteixII þ c:c: ð39Þ
where
�a ¼ 1

ða1Þ2 þ ðb1Þ2
h i ða1c1 þ b1d1Þ cos c1 þ ðb1c1 � a1d1Þ senc1½ � ð40Þ

�b ¼ 1

ða2Þ2 þ ðb2Þ2
h i ða2c2 þ b2d2Þ cos c1 � ðb2c2 � a2d2Þ senc1½ �: ð41Þ
It is meant to describe the four-dimensional invariant manifold in terms of the modal variables U1, V1, U2

and V2, as indicated by
ps ¼ ps0 þ F s1U 1 þ F s2U 2 þ F s3V 1 þ F s4V 2 þ F s5ðU 1Þ2 þ F s6ðU 2Þ2 þ F s7U 1U 2 þ F s8U 1V 1

þ F s9U 2V 2 þ F s10U 1V 2 þ F s11U 2V 1 þ F s12ðV 1Þ2 þ F s13ðV 2Þ2 þ F s14V 1V 2

_ps ¼ Gs1U 1 þ Gs2U 2 þ Gs3V 1 þ Gs4V 2 þ Gs5ðU 1Þ2 þ Gs6ðU 2Þ2 þ Gs7U 1U 2 þ Gs8U 1V 1

þ Gs9U 2V 2 þ Gs10U 1V 2 þ Gs11U 2V 1 þ Gs12ðV 1Þ2 þ Gs13ðV 2Þ2 þ Gs14V 1V 2:

ð42Þ
Any two pairs of generalised co-ordinates (such as pv and pw) and velocities (such as _pv and _pw) can be used
to define the modal amplitudes (U1, U2, V1 and V2, respectively), provided they are not identically null. The
modal amplitudes time responses are explicitly given by the following expressions, once the initial condi-
tions are set
U 1 ¼ pv � pv0

¼ e
2
aIeaIteixI þ e

2
cIIv þ idIIv
� �

aIIeaIIteixII þ e2

4
lI
v þ imIv

� �
ðaIÞ2e2aIt þ

e2

4
lII
v þ imIIv

� �
ðaIIÞ2e2aIIt

þ e2
�IIv þ inIIv
� �

ðaIIÞ2e2aIItei2xII þ e2 ðrv þ isvÞaIaIIeðaIþaIIÞteiðxIþxIIÞ þ c:c:

4 4
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V 1 ¼ _pv

¼ e
2
ðaI þ ibIÞaIeaIteixI þ e

2
cIIv þ idIIv
� �

ðaII þ ibIIÞaIIeaIIteixII þ e2

2
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þ e2

2
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� �
aIIðaIIÞ2e2aIIt þ

e2

2
�IIv þ inIIv
� �

ðaII þ ibIIÞðaIIÞ
2e2aIItei2xII

þ e2

4
ðrv þ isvÞ ðaI þ aIIÞ þ iðbI þ bIIÞ½ �aIaIIeðaIþaIIÞteiðxIþxIIÞ

� e2

4
cIv þ idIv
� �

�aaIaIIeðaIþaIIÞteixI � e2

4
cIIv þ idIIv
� �

�bðaIÞ2e2aIteixII þ c:c: ð43Þ

U 2 ¼ pw � pw0 ¼
e
2
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þ e2

4
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�aaIaIIeðaIþaIIÞteixI

� e2

4
cIIw þ idIIw
� �

�bðaIÞ2e2aIteixII þ c:c: ð44Þ
It remains to evaluate the coefficients Fs1 to Fs14 and Gs1 to Gs14 to each one of the degrees of freedom
s = 1, . . . ,n. It can be accomplished following the steps: firstly, (36) and (39) are inserted into the left-hand
side of (42), while (43) and (44) are inserted into the right-hand side of (42); secondly, for each order of e,
the terms on the left-hand side are identified to those on the right-hand side for each linearly independent
exponential function, so that linear systems of complex equations will be obtained; thirdly, after separation
of real and imaginary parts, these systems can be transformed into linear systems of real algebraic equations
in the coefficients Fs1 to Fs14 and Gs1 to Gs14, which can be finally solved. For brevity, the explict expressions
for the coefficients Fs1 to Fs14 and Gs1 to Gs14 will not be shown here. The authors implemented a compu-
tational procedure to determine them, using a symbolic mathematics package. For details, refer to Baracho
Neto (2003).
4. Example 1: three-degree-of-freedom quadratic oscillator

For the sake of initial benchmarking of the procedure, even before the finite-element implementation
had been pursued, a few test problems were considered. This section refers to one of the very first of those
tests, namely that of a three-degree-of-freedom oscillator with a quadratic-law spring, as seen in Fig. 1.

The assumed non-linear spring laws state that the spring forces are kiDi � kiD
2
i , i = 1,2,3, where Di

stands for the spring deformation. Hence, for positive ki the spring has a softening non-linear behaviour,
whereas for negative ki the spring has a hardening non-linear behaviour. As for the linear viscous dampers,
the dissipative forces are ci _Di, i = 1,2,3, where _Di stands for the spring deformation velocity. The following
parametrisation is introduced for convenience:



Fig. 1. Three-degree-of-freedom quadratic oscillator.
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m1 ¼ �m1m̂ m2 ¼ �m2m̂ m3 ¼ �m3m̂

c1 ¼ �c1c c2 ¼ �c2c c3 ¼ �c3c

k1 ¼ �k1k k2 ¼ �k2k k3 ¼ �k3k

ð45Þ
It will be seen that an adequate choice of the system parameters can be made to assure that a 1:2 internal
resonance happens between the second and the third linear modes. In such conditions, the results obtained
with the proposed procedure are compared with those coming out of direct numerical integration and very
good agreement is observed, in terms of the time responses for each of the three degrees of freedom. It is
also seen that, once two of the generalised co-ordinates are chosen as modal variables, the third co-ordinate
can be expressed in terms of them, as one would expect to see, had the invariant manifold technique been
used (which, by the way, is not trivial at all to apply here). It is seen that the procedure is capable of extract-
ing such explicit analytical relationship of the third generalised co-ordinate in terms of the chosen modal
variables. Moreover, the response of this extracted third generalised co-ordinate, is still in excellent agree-
ment with the multiple scales results, as desired.

4.1. Equations of motion

The equations of motion for the three-degree-of-freedom system of Fig. 1 can be written as in (1) and (2),
with
0M
� �

¼ m̂

�m1 0 0

0 �m2 0

0 0 �m3

2
64

3
75; 0D

� �
¼ c

�c1 þ �c2 ��c2 0

��c2 �c2 þ �c3 ��c3

0 ��c3 �c3

2
64

3
75;

0K
� �

¼ k

�k1 þ �k2 ��k2 0

��k2 �k2 þ �k3 ��k3

0 ��k3 �k3

2
64

3
75

ð46Þ

1K1
� �

¼
� k1 � k2ð Þ �k2 0

�k2 k2 0

0 0 0

2
64

3
75; 1K2

� �
¼

�k2 k2 0

k2 � k2 � k3ð Þ �k3

0 �k3 k3

2
64

3
75;

1K3
� �

¼
0 0 0

0 �k3 k3

0 k3 �k3

2
64

3
75

ð47Þ
It can be seen that the third undamped linear frequency is approximately twice the second one when the
following choice of parameters is made
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�m1 ¼ 2 �m2 ¼ �m3 ¼ 1
�k1 ¼ 1; 54 �k2 ¼ 3 �k3 ¼ 1

ð48Þ
In fact, the three undamped linear frequencies, in this case, are
b1 ¼ 0:5449 rd=s; b2 ¼ 1:1809 rd=s; b3 ¼ 2:3619 rd=s ffi 2b2 ð49Þ
The following parameters have also been assumed
m̂ ¼ 1 kg; k ¼ 1 N=m; k1 ¼ k2 ¼ k3 ¼ 0:25 N=m2 ð50Þ
Two simulations are considered, a damped system and next an undamped system, just for the sake of dis-
playing, for a longer period of time, the non-linear effects present in the multi-mode. In both simulations
the generalised co-ordinates p1 and p2, and their time derivatives, were taken as modal variables of modes II
(third mode) and I (second mode), respectively.
4.2. Damped system

For the damped system with c = 0.1 Ns/m and �c1 ¼ �c2 ¼ �c3 ¼ 1, evaluation of the non-linear multi-
mode, coming out of the strong coupling between the second and the third linear modes, was performed
following the proposed procedure. The damped frequencies (b1 = 0.5449 rd/s, b2 = 1.1798 rd/s and
b3 = 2.3573 rd/s ffi 2b2) are slightly different from the undamped ones—see (49). The associated damped
free-vibration responses for all generalised co-ordinates were determined, such as that shown in Fig. 2
for the generalised co-ordinate p2, for a specified set of initial conditions âIð0Þ ¼ 0:10 m, âIIð0Þ ¼ 0:01 m,
hI(0) = 0 and hII(0) = 0, which lead to p1(0) = 0.1829 m, _p1ð0Þ ¼ �0:0251 m/s, p2(0) = 0.0799 m, _p2ð0Þ ¼
�0:0017 m/s, p3(0) = �0.2299 m and _p3ð0Þ ¼ 0:0278 m/s. Even in the early stages of the motion, it is al-
ready noticeable how different the linear and the non-linear solutions are. Furthermore, a good agreement
is visible between the results of the proposed procedure and those of numerical integration.
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4.3. Undamped system

For the undamped system, the exchange of energy between the third and the second linear modes goes
on indefinitely. Figs. 3–5 show the comparison of results among the linear analysis, multi-mode procedure
and direct numerical integration. Again, even in the early stages of the motion, it is readily noticeable how
different the linear and the non-linear solutions are. With regard to the multi-mode procedure, it is worth-
while mentioning that the extracted generalised co-ordinate, defined in terms of the other two generalised
co-ordinates and velocities chosen as modal variables, in the manner equivalent to the invariant manifold
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description of the multi-mode, agrees very well with the original time response. The initial conditions in
terms of modal amplitudes and phase angles remain the same as before, that is, âIð0Þ ¼ 0:10 m,
âIIð0Þ ¼ 0:01 m, hI(0) = 0 and hII(0) = 0, nevertheless they are slightly different in terms of generalised
co-ordinates and velocities, that is, p1(0) = 0.1838 m, _p1ð0Þ ¼ 0 m/s, p2(0) = 0.0802 m, _p2ð0Þ ¼ 0 m/s,
p3(0) = �0.2301 m and _p3ð0Þ ¼ 0 m/s.

Fig. 6 displays the phase-trajectory projection from the four-dimensional invariant manifold onto the
p1 · p2 phase plane, from which it is clearly seen the non-linear aspect of the multi-mode.
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5. Example 2: elastic pendulum

This section refers to another benchmark test, namely that of a two-degree-of-freedom undamped elastic
pendulum, as seen in Fig. 7.

In this case a 1:2 internal resonance is assumed to happen between the angular and the radial modes. The
results obtained with the proposed procedure are compared with those coming out of direct numerical inte-
gration and very good agreement is observed, in terms of the time responses for each of the two degrees of
freedom. Analytical studies, such as those of Mazzilli (1982), showed that there is a strong interaction be-
tween the radial and the angular modes for the great majority of initial conditions. The energy imparted to
one of the modes is continuously transferred to the other one along the time response. Roughly speaking,
when the maximum amplitude is attained for one mode, the other one has almost null amplitude. Yet, there
are particular starting conditions for which both modes have nearly simple harmonic motions in steady
states, without noticeable energy exchange. Numerical simulations were performed in both cases, with good
results. When the energy exchange is remarkable, it is seen that the response anticipated by the procedure
for multi-mode evaluation proposed here is extremely sensitive to small numerical deviations of the gener-
alised co-ordinates and velocities, producing a large variation upon the modulation period. As a conse-
quence, there appears a shift between the numerical integration results and the multi-mode procedure
after a few cycles.

5.1. Equations of motion

The equations of motion for the two-degree-of-freedom undamped elastic pendulum of Fig. 7, see Mazz-
illi (1982), can be shown to be
€p1 þ b2
1p1 þ b2

2ð1� cos p2Þ � ð1þ p1Þ _p22 ¼ 0

ð1þ p Þ2€p þ 2ð1þ p Þ _p _p þ b2ð1þ p Þ senp ¼ 0
ð51Þ
1 2 1 1 2 2 1 2
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where parameters s (spring stiffness), m (suspended mass) and L (pendulum length) are chosen so that
b1 ¼
ffiffiffiffi
s
m

r
¼ 9:050 rd=s ¼ 2b2; b2 ¼

ffiffiffi
g
L

r
¼ 4:525 rd=s ð52Þ
If non-linearities up to the quadratic order are kept, a simpler non-linear set of differential equations can be
used instead of (51)
€p1 þ b2
1p1 þ

1

2
b2
2p

2
2 � _p22 ¼ 0

€p2 þ b2
2p2 þ b2

2p1p2 þ 2p1€p2 þ 2 _p1 _p2 ¼ 0
ð53Þ
According to the notation used in (1) and (2), the following matrices can be recognised, all the other ones
being null
0M
� �

¼
1 0

0 1

� �
; 0K

� �
¼ b2

1 0

0 b2
2

" #
ð54Þ

1M1
� �

¼
0 0

0 2

� �

1D1
� �

¼
0 0

0 1

� �
; 1D2

� �
¼

0 �1

1 0

� �

1K1
� �

¼
0 0

0
b22
2

� �
; 1K2

� �
¼

0
b22
2

b22
2

0

2
4

3
5

ð55Þ
The generalised co-ordinate p2 and its corresponding velocity _p2 were taken as modal variables of the lower
frequency mode (bI = b2 = 4.525 rd/s), whereas p1 and its corresponding velocity _p1 were taken as modal
variables of the higher frequency mode (bII = b1 = 9.050 rd/s). Two simulations are discussed in what
follows, for rather different physical situations concerning the energy exchange between the resonating
modes.
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5.2. First simulation: large energy exchange

The first numerical simulation corresponds to the case of strong energy exchange between the two res-
onating modes, resulting in a ‘‘beating’’ or modulation effect in the time responses, as seen in Figs. 8 and 9.
In order to perform this study, the initial conditions were set to âIð0Þ ¼ 0:01, âIIð0Þ ¼ 0:10, hI(0) = 0 and
hII(0) = 0, which lead to p1(0) = 0.1000, _p1ð0Þ ¼ 0, p2(0) = 0.0097 and _p2ð0Þ ¼ 0.

Note that in this model there are also cubic non-linearities, besides the quadratic ones. Due to the trun-
cation of the time response expansions for orders larger than e2, small quantitative discrepancies should be
expected. In fact, numerical integration does show slight shifts in the time responses, as compared to the
multiple-scale results, for large times (here, for tP 100 s), although the amplitudes still agree well. This sug-
gests that small differences arise between the numerical and analytical estimates for hI and hII, which correct
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the frequency estimates. It is also seen a small difference in the period of amplitude modulation, or ‘‘beating
period’’. Even so, projections of phase trajectories—embedded on the four-dimensional invariant mani-
fold—onto a phase plane, such as _p2 � p2 in Fig. 10, agree very well for both the numerical and the ana-
lytical solution.

5.3. Second simulation: negligible energy exchange

The second numerical simulation illustrates the case of a quasi-harmonic steady state, as result of a par-
ticular choice of initial conditions—see Mazzilli (1982)—, as seen in Figs. 11 and 12. In order to perform
this study, the initial conditions were set to âIð0Þ ¼ 0:2829, âIIð0Þ ¼ 0:1000, hI(0) = 0 and hII(0) = 0, which
lead to p1(0) = 0.1050, _p1ð0Þ ¼ 0, p2(0) = 0.2740 and _p2ð0Þ ¼ 0.
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60

multi-mode procedure
direct integration

p 2
(t)

t (s)

Fig. 11. Time-response for p2(t) co-ordinate.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

40 42 44 46 48 50 52 54 56 58 60

direct integration

t (s)

p 1
(t)

multi-mode procedure

Fig. 12. Time-response for p1(t) co-ordinate.



-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4p 1
(p

2)

p2

Fig. 13. Phase-trajectory projection onto the p1 · p2 phase plane.

O.G.P. Baracho Neto, C.E.N. Mazzilli / International Journal of Solids and Structures 42 (2005) 5795–5820 5813
Here, shifts between the numerical and analytical results are small for the earlier times, but grow con-
siderably as t increases.

Another interesting way to recognize the quasi-stationary state of this particular simulation is to inspect
the projections of phase trajectories—embedded on the four-dimensional invariant manifold—onto the
p1 · p2 phase plane, as seen in Fig. 13.
6. Example 3: portal frame

The third selected example of multi-mode evaluation is the extremely slender portal frame indicated in
Fig. 14. It was discretised with 14 Bernoulli–Euler non-linear finite-elements—see Mazzilli (1990) and Brasil
and Mazzilli (1993)—, comprising 39 degrees of freedom, as seen in Fig. 15.
4m
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m
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Mm

Fig. 14. Portal frame with distributed and lumped masses.
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Both columns (length h = 4 m) and beam (length ‘ = 12 m) are made of 400 · 400 H-type steel rods, for
which the following data apply: Young�s modulus E = 2.05 · 1011 N/m2, mass per unit length
~m ¼ 20:5 kg/m, cross section area A = 2.61 · 10�3 m2, moment of inertia I = 4.45 · 10�6 m4. The acceler-
ation of gravity was taken as g = 9.81 m/s2. Lumped masses, as shown in Fig. 15, m = 3372 kg and
M = 878 kg, are purposefully large to introduce relevant geometric non-linearity into the analysis. In fact,
the large axial force in the columns degrades the frame stiffness, so that the relevant natural frequencies
noticeably decrease. Further, due to the beam large displacements, the deformed equilibrium configuration
cannot be ignored in the analysis. Altogether, this is a remarkably defying example.

It is seen that such a system is internally resonant, when free-vibrations about the deformed equilibrium
configuration take place. In fact, the frequencies of the first two modes are approximately in the 1:2 ratio,
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Fig. 15. Finite-element model for portal frame.
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i.e. the first symmetric mode frequency (8.13 rd/s) is nearly twice that of the first anti-symmetric or sway
mode (4.09 rd/s), as evaluated from the eigenvalue problem in terms of the tangent stiffness matrix. Should
the eigenvalue problem be solved for the vibrations about the undeformed configuration, the frequencies
would be 8.60 rd/s and 4.45 rd/s, respectively, and the internal resonance de-tuning would appear much
larger.

To obtain the deformed equilibrium configuration for the finite-element model, which is an input for the
multi-mode evaluation, it was used the ANDROS program—see Mazzilli and Brasil (1992)—, based on the
same formulation.

The modal variables chosen were the horizontal displacement at mid span (U1 = p19) and its velocity
(V 1 ¼ _p19), for the sway mode, and the vertical displacement at mid span (U2 = p20) and its velocity
(V 2 ¼ _p20), for the first symmetric mode.
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Numerical and analytical solutions for this problem, considering a simplified two-degree-of-freedom
model, were already addressed in Mazzilli and Brasil (1995), under a different viewpoint than that of the
multi-mode evaluation.

In Figs. 16–19, the time responses for the modal variables are displayed, as they come out from the tech-
nique proposed herewith, from the ANDROS program and also from the numerical integration of the
equations of motion proposed in Mazzilli and Brasil (1995).

The time-responses of Figs. 16–19 reveal a complex non-linear vibration pattern. Comparison of results
is best seen zooming those graphs, say from t = 40 s to t = 60 s. For U1 = p19, the multi-mode results agree
very well with those from ANDROS and from the two-degree-of-freedom system, as seen in Fig. 20.
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For U2 = p20, agreement is not as good. For earlier times, the multi-mode results are still qualitatively
close to those from ANDROS, although these latter ones are quantitatively smaller. Yet, the results from
the two-degree-of-freedom system already display a phase shift with respect to those from both the multi-
mode and ANDROS, not to mention larger amplitudes, as seen in Fig. 21. It is expected that the explana-
tion for this might be related to the assumptions and simplifications made upon the displacement field for
the two-degree-of-freedom system.

As time increases, due to small differences in the non-linear frequencies xi ¼ bi þ _hi, the multi-mode and
ANDROS curves also shift from one another, although still displaying the same pattern. For instance, what
happens with the multi-mode results between t = 120 s and 160 s is approximately the same that happens
with ANDROS results between t = 100 s and 140 s, as seen in Figs. 22 and 23. Here, it should be recalled
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that the multi-mode expansions were truncated for terms of order larger than e2, whereas ANDROS takes
into account up to cubic non-linearities.

To check the invariant manifold description of a generalised co-ordinate other than the modal vari-
ables, it was selected p12, which stands for the beam left-end rotation. The results for p12(U1,V1,U2,V2),
as in (42), agree perfectly with those of the time response (35) and those from ANDROS, as seen in
Fig. 24.

The correlation between the multi-mode and ANDROS results for velocities is expected to be worse
than for displacements, as already seen. Fig. 25 shows large deviations for _p12, in spite of fine agreement
for p12.
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7. Concluding remarks

The paper addresses the challenging issue of evaluation of non-linear multi-modes for finite-element
models, using the method of multiple scales. The formulation presented herewith was implemented in sym-
bolic mathematics and is capable of handling problems of several tens of degrees of freedom in a PC plat-
form. Substitution of symbolic implementation by faster numerical codes, together with parallel computing
may not only speed up the analyses, but also allow to tackle much larger problems. Pursuing further the
asymptotic expansions up to terms of order e3 may lead to even better results, although the essential char-
acteristics of multi-modes in the case of 1:2 internal resonance have already been captured.
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